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ON LOCAL COMPARISON BETWEEN VARIOUS METRICS ON

TEICHMÜLLER SPACES

D. ALESSANDRINI, L. LIU, A. PAPADOPOULOS, AND W. SU

Abstract. There are several Teichmüller spaces associated to a surface of
infinite topological type, after the choice of a particular basepoint ( a complex
or a hyperbolic structure on the surface). These spaces include the quasicon-
formal Teichmüller space, the length spectrum Teichmüller space, the Fenchel-
Nielsen Teichmüller space, and there are others. In general, these spaces are
set-theoretically different. An important question is therefore to understand

relations between these spaces. Each of these spaces is equipped with its own
metric, and under some hypotheses, there are inclusions between these spaces.
In this paper, we obtain local metric comparison results on these inclusions,
namely, we show that the inclusions are locally bi-Lipschitz under certain hy-
potheses. To obtain these results, we use some hyperbolic geometry estimates
that give new results also for surfaces of finite type. We recall that in the case
of a surface of finite type, all these Teichmüller spaces coincide setwise. In the
case of a surface of finite type with no boundary components (and possibly
with punctures), we show that the restriction of the identity map to any thick
part of Teichmüller space is globally bi-Lipschitz with respect to the length
spectrum metric and the classical Teichmüller metric on the domain and on
the range respectively. In the case of a surface of finite type with punctures
and boundary components, there is a metric on the Teichmüller space which
we call the arc metric, whose definition is analogous to the length spectrum
metric, but which uses lengths of geodesic arcs instead of lengths of closed
geodesics. We show that the restriction of the identity map restricted to any
“relative thick” part of Teichmüller space is globally bi-Lipschitz, with respect
to any of the three metrics: the length spectrum metric, the Teichmüller metric
and the arc metric on the domain and on the range.
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1. Introduction

The paper concerns surfaces of finite and of infinite topological type. The results
are not identical for both cases, and we treat them separately. We start with the
case of surfaces of infinite type.

Let Σ be a surface of infinite topological type, that is, a surface obtained by gluing
a countably infinite number of generalized pairs of pants along their boundary
components. Here, a generalized pair of pants is a sphere with three holes, a
hole being either a point removed or an open disk removed. There are several
Teichmüller spaces associated with such a surface Σ, with several inclusions between
these spaces, and different metrics on them. We are interested in comparing these
metrics, in cases where a comparison can be done. This paper is a continuation
of the work done in [2] and [3], in which we introduced a space we called the
Fenchel-Nielsen Teichmüller space, which is equipped with a metric we called the
Fenchel-Nielsen metric. We compared this metric with the Teichmüller metric. The
definition of the Fenchel-Nielsen Teichmüller space of Σ depends on the choice of
a basepoint for this space and of a pair of pants decomposition of the surface.
Our work is also in the spirit of [12], in which we studied the various metrics on
Teichmüller spaces of surfaces of infinite topological type. In the present paper,
we mainly consider the question of local metric comparison between the Fenchel-
Nielsen metric, the quasiconformal metric and the length spectrum metric.

Teichmüller spaces can be seen as parameter spaces for conformal structures
on Σ. We will always consider these conformal structures as endowed with their
intrinsic metric. This is a hyperbolic metric in the given conformal class, and it
was defined by Bers. In the case of a surface with no boundary components (that
is, no ends whose neighborhoods are conformally equivalent to annuli) but which
may have punctures (that is, ends with neighborhoods conformally to punctured
discs), the intrinsic metric coincides with the Poincaré metric. But in the case of a
surface with boundary components the two metrics do not coincide, see the end of
Section 4 of [2] for the definition and a discussion. Endowing the Riemann surface
with its intrinsic metric will allow us to use techniques from hyperbolic geometry,
like the existence of hyperbolic pair of pants decompositions and of Fenchel-Nielsen
coordinates. We note that in order to define Fenchel-Nielsen coordinates, we need
to show that given a topological pair of pants decomposition P = {Ci}i=1,2,...

of Σ and a hyperbolic metric on Σ, there exists a unique geodesic pair of pants
decomposition in which all the closed curves are homotopic to those in P. This is
not true for general hyperbolic metrics. One problem is that union of the geodesics
obtained by replacing each curve Ci of P by its geodesic representative might not
be closed, and there are others.

In [2] we discussed this question and we gave a necessary and sufficient condition
on hyperbolic structures on surfaces of infinite type to have a pair of pants decom-
position. One way of stating that result is to say that a hyperbolic metric satisfies
this property if and only if it is the intrinsic metric of some conformal structure.
This is the reason why in what follows we shall consider only hyperbolic metrics
that are intrinsic in the sense we defined. A hyperbolic metric S on Σ has Fenchel-
Nielsen coordinates ((lS(Ci), θS(Ci)))i=1,2,... with respect to P, using the notation

of [2]. For the convenience of the reader, the definition of these coordinates as well
as the precise definitions of the three Teichmüller spaces that we mentioned above
are recalled in §2 below.

We consider a conformal structure S0 on Σ which we call the basepoint of the
Teichmüller space. We denote by (Tqc(S0), dqc) the quasiconformal Teichmüller
space equipped with the corresponding metric, and by (Tls(S0), dls) the length-
spectrum Teichmüller space equipped with its metric. We also let P = {Ci}i=1,2,...
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be a fixed pair of pants decomposition of Σ and we denote by (TFN (S0), dFN ) the
resulting Fenchel-Nielsen Teichmüller space equipped with its metric. The Fenchel-
Nielsen Teichmüller space depends on the choice of P, but we will not mark this
dependence explicitly unless this is necessary. Hence the space TFN (S0) and its
metric are not intrinsic objects associated to S0 but they constitute a useful tool to
study the other spaces, because TFN(S0) has explicit coordinates and it is isometric
to the sequence space ℓ∞. We shall recall the definitions in Section 2.

We note that in this paper we consider the reduced Teichmüller space theory.
This means that if the ideal boundary of S0 is non-empty (see e.g. [16] for the
definition of the ideal boundary), a Teichmüller space of Σ is a set of equivalence
classes of marked Riemann surfaces up to homotopy, where the homotopy is free
on the boundary components.

Given a hyperbolic structure S and a simple closed curve C on Σ, we denote
by lS(C) the length of the unique S-geodesic in the homotopy class of C. In the
case where S is a conformal structure on Σ, then we denote by lS(C) the length of
the unique geodesic in the homotopy class of C with respect to the intrinsic metric
associated to S.

We say that a conformal structure S is upper-bounded with respect to P if there
exists a constant M > 0 such that for any simple closed curve Ci in P, we have
lS(Ci) ≤ M .

We say that a conformal structure is upper-bounded if it is upper-bounded with
respect to some pair of pants decomposition, or if it is upper-bounded with respect
to a pair of pants decomposition P which is understood.

A marked conformal structure (respectively a marked hyperbolic structure) on Σ
is a pair (f, S) where S is a surface homeomorphic to Σ equipped with a conformal
(respectively a hyperbolic structure) and f : Σ → S a homeomorphism. A marked
conformal (respectively hyperbolic) structure on S induces a conformal (respectively
hyperbolic) structure on the surface Σ itself by pull-back. Conversely, a conformal
(respectively hyperbolic) structure on S can be considered as a marked hyperbolic
surface, by taking the marking to be the identity homeomorphism of Σ. using
this formalism, an element of Teichmüller space is then an equivalence class of
marked hyperbolic structures (f, S) where the equivalence relation ∼ defined by
(f, S) ∼ (f ′, S′) if there exists an isometry h : S → S′ such that h ◦ f is homotopic
to f ′. We shall use the notation [f, S] to denote the equivalence class of the marked
surface (f, S).

In [2, Theorem 8.10], we proved the following:

Theorem 1.1. Let S0 be a conformal structure on Σ, and suppose that S0 is upper-
bounded. Then we have a set-theoretic equality Tqc(S0) = TFN(S0). Furthermore,
the identity map

j : (Tqc(S0), dqc) ∋ [f, S] 7→ ((lS(Ci), θS(Ci)))i=1,2,... ∈ (TFN (S0), dFN )

is a locally bi-Lipschitz homeomorphism.

Since the metric dFN on the Fenchel-Nielsen Teichmüller space TFN(S0) makes
this space isometric to the sequence space ℓ∞, Theorem 1.1 gives a locally bi-
Lipschitz homeomorphism between the quasiconformal Teichmüller space (Tqc(S0), dls)
and ℓ∞. An analogous result was proved by Fletcher in [8], in the setting of non-
reduced Teichmüller spaces.

Our main goal in this paper is to give a local comparison result between the
Fenchel-Nielsen metric and the length spectrum metric. The latter metric, in the
setting of surfaces of infinite type, was first studied by Shiga in [17]. A famous
lemma due to Wolpert (see the exposition in [1]) implies that for any hyperbolic
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surface S0, we have a natural inclusion

(1) Tqc(S0) →֒ Tls(S0)

given by the identity map, and that this map is 1-Lipschitz, that is, for any two
elements S and S′ in Tqc(S0), we have dls(S, S

′) ≤ dqc(S, S
′). We note by the way

that in general, this inclusion map is not surjective (see [12] for an example).
Theorem 1.1, combined with Wolpert’s result, gives the following:

Theorem 1.2. Let S0 be a conformal structure on Σ which is upper-bounded.
Then, for any S in TFN (S0), there exists a neighborhood N of S in TFN (S0) and a
constant C > 0 that depends only on N such that for any S′ and S′′ in N , we have

dls(S
′, S′′) ≤ CdFN (S′, S′′).

Besides the upper-boundedness property for conformal structures, we shall use
the following stronger property, which we call Shiga’s property, because it was used
in a similar context in Shiga’s paper [17].

We say that a conformal structure S satisfies Shiga’s property with respect to P

if there exist two positive constants δ and M such that the following holds

(2) ∀Ci ∈ P, δ ≤ lS(Ci) ≤ M.

Like for the upper-boundedness condition, we shall say that a conformal struc-
ture satisfies Shiga’s property if it satisfies such a property for some pair of pants
decomposition, or if it satisfies it for a pair of pants decomposition which is under-
stood.

The main result of this paper is the following, which proof appears at the end
of Section 3 (Theorem 3.5).

Theorem 1.3. Let S0 be a conformal structure on Σ satisfying Shiga’s condition
(2) and let T(S0)qc be the corresponding Teichmüller space. For any element S of
Tqc(S0) and for any positive constant D, there exists a positive real number C that
depends only on δ,M,D and dls(S0, S) such that if and if two elements S1 and
S2 of Tqc(S0) are in the open ball of centre S and radius D, then dFN (S1, S2) <

Cdls(S1, S2).

From Theorems 1.1, 1.2 and 1.3, we deduce the following.

Theorem 1.4. Let S0 be a conformal structure on Σ satisfying Shiga’s condition.
Then we have a set-theoretic equality Tqc(S0) = Tls(S0) = TFN(S0), and the identity
map between any two of the three spaces with their respective metrics dqc, dls and
dFN is locally bi-Lipschitz.

This implies in particular that under Shiga’s condition, Tls(S0) is locally bi-
Lipschitz equivalent to the sequence space ℓ∞. It also implies that the Fenchel-
Nielsen Teichmüller space TFN (S0), as a set, does not depend on the choice of the
pair of pants decomposition of S0, and that the identity map between two Fenchel-
Nielsen spaces with the same basepoint and corresponding to different pairs of pants
decompositions is a bi-Lipschitz homeomorphism. (In particular, the topologies
induced are the same.)

We also show below (Theorem 4.5 in Section 4) that there exists a conformal
structure S0 on Σ that does not satisfy Shiga’s condition and such that the in-
clusion map between the quasiconformal Teichmüller space (Tqc(S0), dqc) and the
length spectrum Teichmüller space (Tls(S0), dls) is not locally bi-Lipschitz onto its
image. (Recall that by Wolpert’s inequality there is always a set-theoretic inclusion
Tqc(S0) ⊂ Tls(S0).)

The above results and their proofs, although they are formulated for surfaces of
infinite topological type, apply with little changes to surfaces of finite topological
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type. In the latter case, all Teichmüller spaces coincide setwise. Some of the results
we obtain here for surfaces of infinite type are known to be true for surfaces of
finite type, but we also obtain some new results. We consider the case of surfaces
of finite topological type in section 5.

In the case of a surface of finite type with punctures and nonempty boundary, we
studied in the papers [13] and [14] a metric on Teichmüller space which we called
the arc metric and which we denote by δL, whose definition is analogous to the
length spectrum metric, but which uses lengths of arcs instead of lengths of closed
curves. For such a surface, we let D be the set of boundary components of S.

We recall that for a surface of finite type and for ǫ > 0, the ǫ-thick part of
Teichmüller space, denoted by Tǫ, is defined as the space

Tǫ(S) = {X ∈ T(S) | ∀γ ∈ S, lX(γ) ≥ ǫ}

(Theorem 5.3 below).
For surfaces of finite type with nonempty boundary, for ǫ > 0 and L ≥ ǫ, we

define the ǫ0-relative ǫ-thick part of Teichmüller space, denoted by Tǫ,ǫ0 , as the
subset of the ǫ-thick part of Teichmüller space defined as

Tǫ,ǫ0(S) = {X ∈ T(S) | ∀γ ∈ S, lX(γ) ≥ ǫ and ∀δ ∈ D, lX(γ) ≤ ǫ0}.

We prove the following (Theorem 5.2 below):

Theorem 1.5. Let S be a topological finite type surface. For any ǫ > 0 and any
ǫ0 > 0, the identity map between any two of the three metrics dls, dqc and δL on
Tǫ,ǫ0(S) is globally bi-Lipschitz.

In the case where the surface S is of finite type and with empty boundary, then
we have a similar statement for the ǫ-thick part of Teichmüller space (Theorem 5.3
below).

2. The three Teichmüller spaces

In oder to make the paper self-contained and for the convenience of the reader,
we recall the precise definitions of the three Teichmüller spaces that we associate
to a surface of infinite topological type, namely, the quasiconformal Teichmüller
space, the Fenchel-Nielsen Teichmüller space and the length-spectrum Teichmüller
space. These spaces were considered in the papers [2], [3], and [12].

We start with the quasiconformal Teichmüller space Tqc(S0). In this definition
the hyperbolic metrics do not play a significant role, that is, we only use the un-
derlying Riemann surface structure of such a metric. More precisely, the elements
of Tqc(S0) are the homotopy classes of conformal structures S on Σ such that the
identity map between Σ equipped with S0 and S on the domain and on the target
respectively is homotopic to a quasiconformal map. The space Tqc(S0) is equipped
with the quasiconformal metric, also called the Teichmüller metric, in which for
any two homotopy classes of conformal structures (Σ, S) and (Σ, S′), their quasi-
conformal distance dqc(S, S

′) is defined as

(3) dqc(R,R′) =
1

2
log inf{K(f)}

where the infimum is taken over the set of quasiconformal dilatations K(f) of
quasiconformal homeomorphisms f : (Σ, S) → (Σ, S′) which are homotopic to
the identity. Here, we are using the notation (Σ, S) to say that S is a structure
(conformal or hyperbolic) on the surface S, with the marking being the identity
map.

The conformal structure S0 is the basepoint of Tqc(S0).
We now recall the definition of the Fenchel-Nielsen Teichmüller spaces TFN (S0).

In this definition we use the intrinsic hyperbolic metric associated to a conformal
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structure, see the discussion in the introduction regarding the pair of pants de-
composition rendered geodesic with respect to the intrinsic hyperbolic metric. The
definition of TFN (S0) is relative to the choice of a (topological) pair of pants de-
composition P = {Ci} of Σ, and to the Fenchel-Nielsen coordinates associated to
that decomposition. The definition of the Fenchel-Nielsen parameters is similar to
the one that is done in the case of surfaces of finite type, and we considered them
in detail for surfaces of infinite type in [2].

Let S be a (homotopy class of conformal) structure on Σ. To each homotopy
class of closed geodesics Ci ∈ P, we consider its length parameter lS(Ci) as defined
in §1 above, and its twist parameter θS(Ci), which is defined only if Ci is not the
homotopy class of a boundary component of Σ, as a measure of the relative twist
amount along the geodesic in the class Ci between the two generalized pairs of
pants that have this geodesic in common. The twist amount per unit time along
the (geodesic in the class) Ci is chosen so that a complete positive Dehn twist along
Ci changes the twist parameter by addition of 2π.

Thus, for any conformal structure on S, its Fenchel-Nielsen parameter relative
to P is the collection of pairs

((lS(Ci), θS(Ci)))i=1,2,...

where it is understood that if Ci is homotopic to a boundary component, then there
is no twist parameter associated to it, and instead of a pair (lS(Ci), θS(Ci)), we
have a single parameter lS(Ci).

Now given two conformal structures S and S′ on Σ, their Fenchel-Nielsen dis-
tance (with respect to P) is

(4) dFN (S, S′) = sup
i=1,2,...

max

(
∣

∣

∣

∣

log
lS(Ci)

lS′(Ci)

∣

∣

∣

∣

, |lS(Ci)θS(Ci)− lS′(Ci)θS′(Ci)|

)

,

again with the convention that if Ci is the homotopy class of a boundary component
of Σ, then there is no twist parameter to be considered.

Two conformal structures S and S′ on Σ are said to be Fenchel-Nielsen bounded
(relatively to P) if their Fenchel-Nielsen distance is finite. Fenchel-Nielsen bound-
edness is an equivalence relation.

We say that two hyperbolic structures S and S′ on Σ are equivalent if there
exists an isometry (Σ, S) → (Σ, S′) which is homotopic to the identity. Now given
our basepoint S0 of Teichmüller space, the Fenchel-Nielsen Teichmüller space with
respect to P and with basepoint S0, denoted by TFN (S0), is the space of equivalence
classes of conformal structures that are Fenchel-Nielsen bounded from S0 relative
to P.

The function dFN defined above is a distance function on TFN (S0) and we call
it the Fenchel-Nielsen distance relative to the pair of pants decomposition P. The
map

TFN (S0) ∋ H 7→ (log(lH(Ci))− log(lS0
(Ci)), lH(Ci)θH(Ci))i=1,2,... ∈ ℓ∞

is an isometric bijection between TFN (S0) and the sequence space ℓ∞. It follows
from known properties of ℓ∞-norms that the Fenchel-Nielsen distance on TFN (S0)
is complete.

Finally, we recall the definition of the length-spectrum Teichmüller space Tls(S0)
with basepoint S0. Again, in this definition we use the intrinsic hyperbolic metric
associated to a conformal structure, see the discussion in the introduction.

We let S denote the set of homotopy classes of simple closed curves on Σ that
are not homotopic to a point or to a puncture (but they can be homotopic to
a boundary component). We first define the length-spectrum constant L(f) of a
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homeomorphism f : (Σ, S0) → (Σ, S) where S and S′ are two (homotopy classes
of) conformal structures on Σ as

L(f) = sup
α∈S

{

lS′(f(α))

lS(α)
,

lS(α)

lS′(f(α))

}

.

This quantity L(f) depends only on the homotopy class of f , and we say that f
is length-spectrum bounded if L(f) < ∞.

We consider that two hyperbolic metrics (Σ, S) and (Σ, S′) on Σ are equivalent if
there exists an isometry (or, equivalently, a length spectrum preserving homeomor-
phism) from (Σ, S) to (Σ, S′) which is homotopic to the identity. The length spec-
trum Teichmüller space Tls(S0) of Σ with basepoint S0 is the set of homotopy classes
of conformal structures S on Σ such that the identity map Id : (Σ, S0) → (Σ, S) is
length-spectrum bounded.

The length-spectrum metric dls on Tls(S0) is defined by taking the distance
dls(S, S

′) between two points in that space to be

(5) dls(S, S
′) =

1

2
logL(Id).

where Id is the identity map between (Σ, S) and (Σ, S′) (we note that the length-
spectrum constant of a length-spectrum bounded homeomorphism depends only on
the homotopy class of such a homeomorphism.)

3. On the Fenchel-Nielsen distance and the length spectrum distance

Let S be a hyperbolic structure on the surface of infinite topological type S and
let P = {Ci} be a geodesic pair of pants decomposition of S.

Lemma 3.1. Let δ < M be two positive constants such that each Ci ∈ P satisfies
δ ≤ lS(Ci) ≤ M . Then, for each Ci ∈ P, we can find a simple closed geodesic βi

satisfying the following properties:

(1) βi intersects Ci in a minimal number of points (this number is one or two);
(2) βi does not intersect Cj, for any j 6= i;
(3) there is a constant L depending only on δ and M such that lS(βi) < L;
(4) the sine of the intersection angle (or of the two angles) of βi with Ci is

bounded from below by a positive constant that depends only on M .

Proof. Topologically, the curves βi are represented in Figure 1. Using the in-

Figure 1. The curve βi used in the proof of Lemma 3.1. In each case,
we have represented the simple closed curves Ci and βi.
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equalities δ ≤ lS(Ci) ≤ M , an upper bound L for lS(βi) is obtained by estimates
on hyperbolic right-angled hexagons and pentagons. Using the upper bound L for
lS(βi) and the upper bound M for lS(Ci), we can prove that sin θ has a positive
lower bound depending on L and M . We refer to Lemma 7.5 in [2] for the details
of the proof.

�

Now we fix an element Ci ∈ P and we let τ t : S → St be the time-t Fenchel-
Nielsen left twist deformation of S along Ci. (At time t, we twist by an amount
equal to t measured on the curve Ci.)

Let β be a simple closed geodesic on S. For all t in R, we denote by βt the
simple closed geodesic in St homotopic to τ t(β) and we let lt(β) = lSt

(βt) be its
hyperbolic length. (Note that the class of βt is the same as the class of β when we
consider the hyperbolic structures as being on the same fixed base surface, or as
marked surfaces with respect to a fixed base surface). The intersection angle of Ci

and βt at a point p ∈ Ci ∩ βt (measured from Ci to βt) is denoted by θt(p).
All angles used in this paper take their values in the interval [0, π].
We shall use the following formulae due to Wolpert [20], concerning the first and

second derivatives of the Fenchel-Nielsen flow. We use the formulation in Weiss [19]
p. 281).

Lemma 3.2. For any simple closed geodesic β, the function t 7→ lt(β) is real-
analytic, and we have

dlt(β)

dt

∣

∣

t=0
=

∑

p∈Ci∩β

cos θ(p)

and

d2lt(β)

dt2

∣

∣

t=0
=
∑

p,q

el1 + el2

2(el(β) − 1)
sin θ(p) sin θ(q) +

∑

p

el(β) + 1

2(el(β) − 1)
sin2 θ(p).

In the right hand side of the last inequality, the first sum is taken over the set of
distinct ordered pairs of points p, q in Ci ∩ β, and l1 and l2 are the lengths of the
two subarcs that they subdivide on β, and the second sum is taken over all points p

in Ci ∩ β.

We shall use special cases of the above formulae, where β intersects Ci either in
one or in two points.

In the case where β and Ci have only one intersection point p, with intersection
angle θ(p), the formulae become

dlt(β)

dt

∣

∣

t=0
= cos θ(p)

and
d2lt(β)

dt2

∣

∣

t=0
=

el(β) + 1

2(el(β) − 1)
sin2 θ(p).

In the case where β and Ci have two intersection points, denoted by p1 and p2,
the formulae become

dlt(β)

dt

∣

∣

t=0
= cos θ(p1) + cos θ(p2)

and

d2lt(β)

dt2

∣

∣

t=0
=

el1 + el2

(el(β) − 1)
sin θ(p1) sin θ(p2) +

el(β) + 1

2(el(β) − 1)
(sin2 θ(p1) + sin2 θ(p2)).

We now consider multi-twists, that is, composition of twist maps along a family
of disjoint simple closed curves.
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We let t = (ti), i = 1, 2, . . . be a sequence of real numbers, and for any real
number t we denote by τ t : S → St the multi-twist obtained by twisting an amount
of ti along each curve Ci.

For t = (ti), i = 1, 2, . . ., we set |t| = supi=1,2,... |ti|.

Proposition 3.3. Assume there exist two positive constants δ and M such that

each Ci ∈ P satisfies δ ≤ lS(Ci) ≤ M . If sup
β∈S

| log
lt(β)

l(β)
| ≤ D, then

|t| < C sup
β∈S

| log
lt(β)

l(β)
|,

where C is a constant depending on δ,M and D.

Proof. It suffices to prove that for all i = 1, 2, . . ., |ti| ≤ C sup
β∈S

| log
lt(β)

l(β)
|, where C

is a constant that depends on δ,M and D and that does not depend on i.
For each i, we let βi be the simple closed geodesic given by Lemma 3.1. We shall

apply the hypothesis | log
lt(β)

l(β)
| ≤ D to β = βi and show that

(6) ∀i = 1, 2, . . . , |ti| ≤ C| log
lt(βi)

l(βi)
|.

Note that the length lt(βi) is affected by the twist along Ci, and not by any twist
along βj for j 6= i..

From 6, we will then get

|t| = sup{|ti|} ≤ C sup
βi

| log
lt(βi)

l(βi)
| ≤ sup

β∈S

| log
lt(β)

l(β)
|,

which is what we need to prove.
Thus, we now prove 6. We only need to assume that

sup
βi

| log
lt(βi)

l(βi)
| ≤ D,

which is weaker than our assumption that

sup
β∈S

| log
lt(β)

l(β)
| ≤ D.

Without loss of generality, we can assume that ti > 0. In the following estimates,
we can restrict our attention to the pair of pants (or two pairs of pants) that contains

Ci, since we only need to consider the ratio lt(β)
l(β) . We denote ti = t for simplicity.

There are two cases:
Case I: Ci intersects βi at a single point p ∈ S. Let θ be the angle at that
intersection point.

By Lemma 3.1, there are positive constants ρ0 = ρ0(M) and L = L(δ,M) such
that sin θ ≥ ρ0, l(βi) < L. Since the function t 7→ lt(β) is real-analytic, we can
write

lt(β) = l(β) +
dlt(β)

dt
|t=0t+

d2lt(β)

dt2
|t=0

t2

2
+ o(t2).

From Lemma 3.2, we obtain

(7) lt(βi) = l(βi) + cos θ · t+
el(βi) + 1

4(el(βi) − 1)
sin2 θ · t2 + o(t2).

We now use the following result of Kerckhoff [9]:

Lemma 3.4. The function t 7→ lt(βi) is strictly convex and the function t 7→ cos θt
is strictly increasing.
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In particular, if lt(βi) attains its minimum at t0, then cos θt0 = 0 (or, equivalently,
θt0 = π

2 ). When t < t0, cos θt < 0 and when t > t0, cos θt > 0.

We set | log
lt(βi)

l(βi)
| = η ≤ D. Then e−η ≤

lt(βi)

l(βi)
≤ eη. Since 1− eη ≤ e−η − 1 ≤

lt(βi)

l(βi)
− 1 ≤ eη − 1, we have

|lt(βi)− l(βi)| = l(βi)|
lt(βi)

l(βi)
− 1|

≤ l(βi)|e
η − 1|

= l(βi)(η +
∑

n≥2

ηn

n!
).

By assumption, l(βi) < L and η ≤ D. As a result,

(8) |lt(βi)− l(βi)| ≤ L(1 +
∑

n≥2

Dn−1

n!
)η = e(D)Lη,

where e(D) is a constant that depends only on D.
Let λ > 0 be a fixed sufficiently small positive constant, to be determined later.
First assume that cos θ ≥ λ. Applying the mean value theorem to the function

f(t) = lt(βi) on the interval [0, t] and using the fact that f ′(t) = cos θt, we have

(9) lt(βi)− l(βi) = cos θξt,

for some ξ ∈ [0, t].
Since cos θξ ≥ cos θ ≥ λ (Lemma 3.4), combining (9) with (8), we have

t =
lt(βi)− l(βi)

cos θξ
≤

e(D)Lη

λ
.

If | cos θ| < λ, we let β′
i be the unique geodesic on S homotopic to the image of

βi under the action of a positive Dehn twist along Ci. Note that the hyperbolic
length of β′

i is bounded by L+M and, in fact, β′
i = lT (βi), where T = lS(Ci) ≥ δ.

The value T is the time needed for a full Dehn twist along βi.
It is clear that β′

i also satisfies the properties (1)-(3) in Lemma 3.1. Property
(4) follows then from these three (see the proof of Lemma 7.5 in [2]). Let p′ be
the intersection point of Ci with β′

i and θ′ be the corresponding intersection angle.
Thus, there is a positive constant ρ1 = ρ1(L + M) such that sin θ′ ≥ ρ1. Let
ρ = min{ρ0, ρ1}.

We want to give a positive lower bound for cos θ′.
Since the hyperbolic length of lt(βi), 0 ≤ t ≤ T is bounded above by L+M and

since ex+1
ex−1 is a strictly decreasing function of x, we have

(10)
elt(βi) + 1

elt(βi) − 1
>

eL+M + 1

eL+M − 1
, for 0 ≤ t ≤ T.

Let us set K =
eL+M + 1

4(eL+M − 1)
.

From Wolpert’s formula (Lemma 3.2), the second derivative with respect to t of
the length function lt(βi) is equal to

(11)
elt(βi) + 1

2(elt(βi) − 1)
sin2 θt.

Inequality (10) shows that

(12) ∀t ∈ [0, T ],
elt(βi) + 1

2(elt(βi) − 1)
sin2 θt > K sin2 θt.
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Thus, for 0 ≤ t ≤ T , the second derivative of lt(βi) with respect to t is bounded
below by K sin2 θt.

For 0 ≤ t ≤ T , we have sin θt ≥ min{sin θ, sin θT = sin θ′} ≥ ρ, since sin θ ≥ ρ0
and sin θ′ ≥ ρ1.

Thus, we have, using (12),

d cos θt
dt

=
d2lt(βi)

dt2
≥ Kρ2.

As a result, and applying again the mean value theorem,

cos θ′ − cos θ ≥ Kρ2T ≥ Kρ2δ.

Now we set λ = Kρ2δ
2 . Since | cos θ| < λ and cos θ′ − cos θ ≥ 2λ, we have cos θ′ > λ.

The same arguments used in the first subcase show that

t ≤
e(D)(L+M)η

λ
.

The remaining subcase is when cos θ ≤ −λ.

0t

cos
t

 

( )
t i
l  

0
t

Figure 2. lt(βi) is strictly convex and cos θt is strictly increasing. If
lt(βi) attains its minimum at t0, then cos θt0 = 0.

Since sin θ ≥ ρ0, we have −
√

1− ρ20 ≤ cos θ < −λ. By Lemma 3.4, if lt(βi)
attains its minimum at t0, then t0 > 0. This uses the fact that cos θ < 0. See Figure
2. Set N = [t0] + 1. Since lt(βi) decreases and sin θt increases when t ∈ [0, t0], we
have

elt(βi) + 1

elt(βi) − 1
sin θ2t ≥

el(βi) + 1

el(βi) − 1
sin θ2 ≥

eL + 1

eL − 1
ρ20, for t ∈ [0, t0].

As a result, the first order derivative of cos θt satisfies

d cos θt
dt

≥
eL + 1

4(eL − 1)
ρ20, for t ∈ [0, t0].
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Note that t0 is exactly the value when cos θt equals 0, it follows that
√

1− ρ20 ≥ cos θt0 − cos θ ≥
eL + 1

4(eL − 1)
ρ20t0.

This shows that N is bounded above by

4(eL − 1)

(eL + 1)

√

1− ρ20
ρ20

+ 1.

Let βN
i be the geodesic on S homotopic to the image of of βi under N -order Dehn

twist along Ci. The intersection angle θN of Ci and βN
i satisfies cos θN > 0 and

the length of βN
i is bounded above by L+NM . By repeating the same argument

as above, we complete the proof of Case (I).
Case II: βi intersects Ci at two different points p1, p2 (and we denote the inter-
secting angle by θ1 and θ2 respectively).

In this case, we consider the formula

lt(βi) = l(βi) + (cos θ1 + cos θ2) · t

+

(

el1 + el2

(el(βi) − 1)
sin θ1 sin θ2 ·

t2

2
+

el(βi) + 1

2(el(βi) − 1)
(sin2 θ1 + sin2 θ2)

)

+ o(t2).

One checks that
el1 + el2

(el(βi) − 1)
sin θ1 sin θ2

el(βi) + 1

2(el(βi) − 1)
(sin2 θ1+sin2 θ2) ≥ A, for some

constant A depending on ρ0 and L.
Now fix a sufficiently small constant 0 < λ0 < A

2 δ. If cos θ1 + cos θ2 ≥ λ0, using
again the mean value theorem for the function t 7→ lt(βi), it is easy to show that

|t| <
e(D)Lη

λ0
.

If | cos θ1 +cos θ2| < λ0, then we replace βi with its image β′
i under the action of

positive Dehn twist along Ci. Let θ
′
1 and θ′2 be the intersection angles of Ci and β′

i,
then the same proof as Case I shows that | cos θ′1+cos θ′2| ≥ λ0. As a result, we also

have |t| <
e(D)(L+ 2M)

λ0
η. If cos θ1 + cos θ2 ≤ −λ0, then we have to replace βi

with the image of βi under the action of a N−order Dehn twist along Ci, denoted
by βN

i , such that l(βN
i ) < L+NM and the two intersection angles of Ci and βN

i are
non-negative. To give a upper bound of N , we use the same argument as the last
step of Case (I), observing that the two intersection angles have the same behavior
under Fenchel-Nielsen twist deformation. �

Now we can prove the following

Theorem 3.5. Let S0 be a conformal structure satisfying Shiga’s condition (2),
let T(S) be the corresponding Teichmüller space and let S be a point in Tls(S0).
If dls(S, S1) ≤ D and dls(S, S2) ≤ D for some positive real number D, then
dFN (S1, S2) < Cdls(S1, S2), where C is a positive constant that depends only on
δ,M,D.

Proof. There are positive constants δ1 and M1, depending on δ,M and D, such
that for each Ci ∈ P, its hyperbolic length in S1 satisfies

δ1 ≤ lS1
(Ci) ≤ M1.

By assumption, dls(S1, S2) ≤ 2D. Then by Proposition 3.3,

dFN (S1, S2) ≤ dFN (S1, S) + dFN (S, S2)

< (C + 1)dls(S1, S2)

where C is a positive constant depending on δ1,M1 and D. �
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4. The Teichmüller distance and the length spectrum distance

In this section, we show that the result in Theorem 1.4 is false if we remove
Shiga’s condition.

Let S0 be a conformal structure on the surface (of infinite type) Σ and Tqc(S0)
be its quasiconformal Teichmüller space, let S be an element of Tqc(S0) and let α
be a simple closed geodesic on S. As before, we denote by St be the hyperbolic
surface obtained by by the time-t Fenchel-Nielsen twist deformation of S along α.
Recall the following proposition, which is a direct corollary of Lemma 7.4 in [2].

Proposition 4.1. Let T be a positive constant. For |t| < T , we have

dqc(S, St) ≥ C|t|,

where C is a positive constant depending only on T .

To compare the Teichmüller distance dqc(S, St) and the length spectrum distance
dls(S, St), we show the following inequality.

Lemma 4.2.

dls(S, St) ≤
1

2
log sup

γ|i(α,γ) 6=0

i(α, γ)|t|

lS(γ)
.

Proof. Without loss of generality, we can assume that t > 0. For any simple closed
curve β satisfying i(β, α) 6= 0, let lSt

(β) denote the hyperbolic length of β in St.
From the definition of the Fenchel-Nielsen twist, we easily have

lS(β) − i(α, β)t ≤ lSt
(β) ≤ lS(β) + i(α, β)t.

The length spectrum distance can be written as

dls(S, St) = max{
1

2
log sup

γ

lSt
(γ)

lS(γ)
,
1

2
log sup

γ

lS(γ)

lSt
(γ)

},

where the supremum is taken for all essential simple closed curves γ.
The hyperbolic length of a homotopy class of simple closed curves γ satisfying

i(α, γ) = 0 is invariant under the twist along α. As a result, we have

dls(S, St) = max{
1

2
log sup

γ|i(α,γ) 6=0

lSt
(γ)

lS(γ)
,
1

2
log sup

γ|i(α,γ) 6=0

lS(γ)

lSt
(γ)

}.

For any simple closed curve γ with i(α, γ) 6= 0,

log
lSt

(γ)

lS(γ)
≤ | log

lS(γ) + i(α, γ)t

lS(γ)
| ≤

i(α, γ)t

lS(γ)

and

log
lS(γ)

lSt
(γ)

≤ | log
lS(γ)

lS(γ)− i(α, γ)t
| ≤

i(α, γ)t

lS(γ)
.

Then we have

dls(S, St) ≤
1

2
sup

γ|i(α,γ) 6=0

i(α, γ)t

lS(γ)
.

�

Note that if lS(α) ≤ L, then it follows from the collar lemma that there is
a constant C depending on L, such that for any simple closed geodesic γ with
i(α, γ) 6= 0, lS(γ) ≥ Ci(γ, α)| log lS(α)|. Then Lemma 4.2 gives:

Lemma 4.3. If lS(α) ≤ L, then there is a constant C depending on L such that

dls(S, St) ≤
t

2C| log lS(α)|
.

Combining Proposition 4.1 and Lemma 4.3, we have
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Theorem 4.4. If lS(α) ≤ L and 0 < |t| < T , then there exists a constant C

depending on L and T , such that

dqc(S, St)

dls(S, St)
≥ C| log lS(α)|.

As an application, we show that

Theorem 4.5. If S0 is a conformal surface of infinite topological type with a pair of
pants decomposition P = {Ci} such that there is a subsequence of {Cik} contained
in the interior of S0 whose hyperbolic lengths tend to zero, then the identity map
between the Teichmüller spaces (Tqc(S0), dqc) and its image in (Tls(S0), dqc) is not
locally bi-Lipschitz.

Proof. By assumption, there is a subsequence {Cik} of elements of P with hyper-
bolic length lS0

(Cik ) = ǫk → 0. For any fixed t, let Sk,t be the hyperbolic surface
obtained by t time Fenchel-Nielsen twist deformation of S0 along Cik . By Theorem
4.4, there is a constant C, depending on the maximum of ǫk and |t|, such that

dqc(S0, Sk,t)

dls(S0, Sk,t)
≥ C| log ǫk|.

Since log ǫk → ∞ as ǫ0 → 0, we have

lim
k→∞

dqc(S0, Sk,t)

dls(S0, Sk,t)
= ∞.

To see that the identity map between dqc and dls is not locally bi-Lipschitz,
we reason by contradiction. Assume there are constants C1, C2, such that for any
S ∈ Tqc(S0), if dls(S0, S) ≤ C1, then dqc(S0, S) ≤ C2dls(S0, S).

Consider Sk,t as above, and note that the Teichmüller distance is controlled by
t. In fact, if |t| < T and lS0

(Cik) ≤ L, we have

dqc(S, Sk,t) ≤ C|t|,

where C is a constant depending on T and L. See [2, Lemma 8.3] for the proof. As
a result, for any k, we can choose |t| sufficiently small such that dls(S0, Sk,t) ≤ C1.
However, we have shown that as k → ∞,

dqc(S0, Sk,t)

dls(S0, Sk,t)
→ ∞,

which contradicts the assumption that dqc(S0, S) ≤ C2dls(S0, S).
�

The following is an analogous result, with a sequence {Sk} in Tqc(S0), such that
dqc(S0, Sk) → ∞, while dls(S0, Sk) → 0.

Example 4.6. Let S0 be a conformal structure of infinite type with pants-decomposition
P = {Ci}, such that there is a subsequence of {Ci}, contained in the interior of
S0, with hyperbolic length lS0

(Cik ) = ǫk tends to zero. Let Sk be the hyperbolic
surface obtained by tk time Fenchel-Nielsen twist deformation of S0 along Cik . Here

{tk} is sequence of positive constants tends to infinity and satisfying
tk

| log ǫk|
→ 0.

Then it follows from the proof of Lemma 4.2 that dls(S0, Sk) ≤
tk

2C| log ǫk|
→ 0.

On the other hand, the fact that dqc(S0, Sk) → ∞ follows from Lemma 7.2 in [2].
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5. The case of surfaces of finite type

In this section, we consider a hyperbolic surface S = Sg,m,n of finite topological
type, of genus g with m punctures and n boundary components. This means that
when we equip such a surface with a conformal or a hyperbolic structure, then
around each puncture, S has a neighborhood that is conformally equivalent to
a punctured disk, and around each boundary component, S has a neighborhood
which is conformally equivalent to an annulus. It is known that in this finite-type
case we have the set-theoretic equalities Tqc(S) = Tls(S) = TFN (S), and we shall
simply denote the Teichmüller space of S by T(S) unless a particular metric has to
be specified.

The reader will notice that Proposition 4.1, Lemmas 4.2 and 4.3 and Theorem
4.4 are valid for any Riemann surface, whether it has finite or infinite topological
type.

From Theorem 4.4, we deduce the following

Corollary 5.1. For any non-elementary Riemann surface of finite type, the iden-
tity map between the Teichmüller and the length spectrum metrics on T(S) is not
a quasi-isometry.

This result, for surfaces of finite conformal type (that is, without boundary) was
obtained independently and by other methods by Choi and Rafi in [6] and by Liu,
Sun and Wei in [15]. The result for surfaces of infinite topological type was obtained
by Liu and Papadopoulos in [12]. The result for finite type surfaces with boundary
is new.

To state other results for surfaces of finite type, we recall the definition of a
metric that we introduced in [13] on the Teichmüller space of such a surface. The
definition of this metric uses the set of homotopic classes of arcs on S. Let us give
the precise definition.

An arc in S is the homeomorphic image of a closed interval whose interior is in
the interior of S and whose endpoints are on the boundary of S. All homotopies
of arcs that we consider are relative to ∂S, that is, they leave the endpoints of arcs
on the set ∂S. An arc is said to be essential if it is not homotopic (relative to ∂S)
to a map whose image is in ∂S.

We let B = B(S) be the union of the set of homotopy classes of essential arcs on
S with the set of homotopy classes of simple closed curves which are homotopic to
boundary components.

Given an element γ of B and an element X of the Teichmüller space T(S), the
length of γ with respect to X , denoted by lX(γ) is defined, in analogy with the
length of an element of S, as the length of the unique geodesic arc homotopic to γ

in a hyperbolic metric representing X .
In [13] and [14] we studied the following metric on T(Sg,m,n). For X and Y in

this space, we set

(13) δL(X,Y ) = logmax

(

sup
γ∈S∪B

lY (γ)

lX(γ)
, sup
γ∈C∪B

lX(γ)

lY (γ)

)

.

We showed that this function δL defines a metric, and that this metric is also given
by

(14) δL(X,Y ) = logmax

(

sup
γ∈B

lY (γ)

lX(γ)
, sup
γ∈B

lX(γ)

lY (γ)

)

.

We call δL the arc metric on the Teichmüller space of the surface with boundary.
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Any hyperbolic surface of finite type Sg,m,n obviously satisfies Shiga’s Condition
(2), and Theorem 3.5 applies to such a surface. Let L be an upper bound for the
hyperbolic length of the boundary geodesics of Sg,m,n. A result by Bers [5] shows
that there exists a pants decomposition of S with an upper bound L0 for the lengths
of the decomposition curves, with L0 depending only on g,m, n and L.

We shall use the following classical terminology.
Given a positive real number ǫ, the ǫ-thick part of the Teichmüller space of S,

denoted by Tǫ(S), is defined as

Tǫ(S) = {X ∈ T(S) | ∀γ ∈ S, lX(γ) ≥ ǫ}.

We let D be the set of boundary components of S. We shall use the following
terminology that we introduced in [14].

For ǫ > 0 and L ≥ ǫ, the ǫ0-relative ǫ-thick part of Teichmüller space, denoted
by Tǫ,ǫ0 , is the subset of the ǫ-thick part of Teichmüller space defined as

Tǫ,ǫ0(S) = {X ∈ T(S) | ∀γ ∈ S, lX(γ) ≥ ǫ and ∀δ ∈ D, lX(δ) ≤ ǫ0}.

We prove the following:

Theorem 5.2. Let S be a topological finite type surface. For any ǫ > 0 and any
ǫ0 > 0, the identity map between any two of the three metrics dls, dqc and δL on
Tǫ,ǫ0(S) is globally bi-Lipschitz.

Proof. We first prove that the identity map

Id : (Tǫ,ǫ0, dls) → (Tǫ,ǫ0, dqc)

is globally bi-Lipschitz.
It suffices to prove that for any X,Y ∈ Tǫ,L, we have

(15) dls(X,Y ) ≤ dqc(p, q) ≤ Kdls(X,Y ).

where K depending on the topological type of S, ǫ and L.
The left hand side inequality in (15) follows from Wolpert’s lemma.
From Theorem 1.4 applied to surfaces of topological finite type, for any D > 0, if

X,Y ∈ Tǫ,L with dls(x, y) ≤ D, we have dqc(xX, Y ) ≤ Cdls(x, y), where C depends
on D, on the topological type of S on ǫ and on L. Therefore, if dls(X,Y ) ≤ D,
the right hand side inequality of of (15) is satisfied. (We could take, for example,
D = 1.)

Now assume that dls(X,Y ) ≥ D. From (12) of Theorem 6.3 in [13], dqc(X,Y ) ≤
δL(X,Y ) + D. From Theorem 3.6 in [14], δL(X,Y ) ≤ dL(X,Y ) + K. Thus, we
have dqc(X,Y ) ≤ dls(X,Y ) +D +K. This gives

dqc(X,Y ) ≤ dls(X,Y ) +K1,

where K1 is a constant depending only on the topological type of S, on ǫ and on
L.

As dls(X,Y ) ≥ D, we have

K1 =
K1

D
D ≤

K1

D
dls(X,Y ),

and

dqc(X,Y ) ≤ (1 +
K1

D
)dls(X,Y ).

This proves the right hand side inequality of (15) in all cases.
It remains to show that the identity map

Id : (Tǫ,ǫ0 , dls) → (Tǫ,ǫ0 , δL)

is globally bi-Lipschitz. We use results proved in [13] and [14] on the natural
embeddings between the Teichmüller space T(S) and the Teichmüller space T(Sd)
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of the double Sd of S. From the proof of Theorem 3.3 of [13], this embedding
is distance-preserving for the quasiconformal metrics on the two spaces. From
Corollary 2.8 of [14], this embedding is distance-preserving with respect to the
metric δL on T(S) and dls on T(Sd). Furthermore, Proposition 4.2 of [13] shows
that the natural embedding T(S) → T(Sd) sends an ǫ0-relative ǫ-thick part of T(S)
to an ǫ′-thick part of T(Sd). We already showed that on such an ǫ′-thick part
of T(Sd), the identity map between the quasi-conformal and the length spectrum
metrics is globally bi-Lipschitz. Therefore, the identity map between the quasi-
conformal metric and the arc metric δL on the ǫ0-relative ǫ-thick part of T(S) is
globally bi-Lipschitz.

�

In the case of a surface S of finite type, we define more simply, for ǫ > 0, the
ǫ-thick part of T(S), denoted by Tǫ(S), as

Tǫ(S) = {X ∈ T(S) | ∀γ ∈ S, lX(γ) ≥ ǫ}.

We have the following theorem, analogous to Theorem 5.2. The proof is similar to
the proof of the first part of Theorem 5.2.

Theorem 5.3. Let S be a topological finite type surface without boundary. For
any ǫ > 0, the identity map between the two metrics dls, dqc on Tǫ(S) is globally
bi-Lipschitz.
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